

Jon Miles jon@milesresearch.com

Analogy and Duality

- Principles of Truth and Knowledge
- Causality
- Duality
- Analogy
- Equations of Emotion

The Singularity of Existence

The Uniqueness of Actuality

There is only one truth: absolute truth.

Exactly one truth, exactly one actual reality at each moment of time. There is exactly one true history. There is an absolute truth of physics. Whatever is happening (and whatever has happened) – there is only one true activity.

The Plurality of Knowledge

- The term "knowledge" is generally referring to the various information derived from observations of the world by people.
- Plurality: there are many ways of describing a given phenomenon (but only one true and actual activity).
- As an approximation to reality, knowledge is never 100% certain or correct so there is an attribute of probability to the truth and validity of the so-called knowledge.
- Over time, and with further experience, many things that are "known" (believed) to be true are later discarded as erroneous.

Incompleteness of Knowledge

- It is important to recognize the incompleteness of conventional belief.
- There are many various views of the truth, each one an incomplete observation of the single true reality.
- NB: This applies to each person as well as collectively. There will always be some error!

The Evolvement of Knowledge

- Consequently, it is best to view "human knowledge" as "human belief" with the understanding that both are subject to change and evolvement.
- The collection of currently accepted human beliefs about reality is best viewed as a model of the world.
- The world model is continuously refined to better fit observational data, and to make better technology.
- The world model always has room for improvement!

The Physical/Logical Duality

Any representation (symbolic or iconic) has the Physical/Logical Duality:

- Hardware: Software
- Medium:Message
- Channel:Signal
- MemoryDevice:Data
- Like a physical disk drive versus a logical disk drive
- There is a physical basis for all recorded knowledge

The Physical/Logical Analogy

- There is an analogy between: Mass/Energy Transfer and Data Transfer
- •In fact, whenever there is a data transfer, there is also energy transfer.

Copying magnetic patterns between media

- In computer hardware
 - In a person's mind

Representation of the Real World

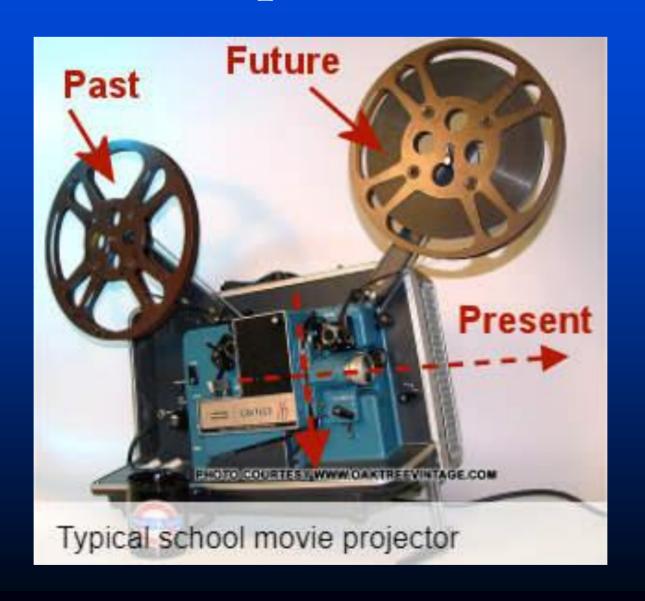
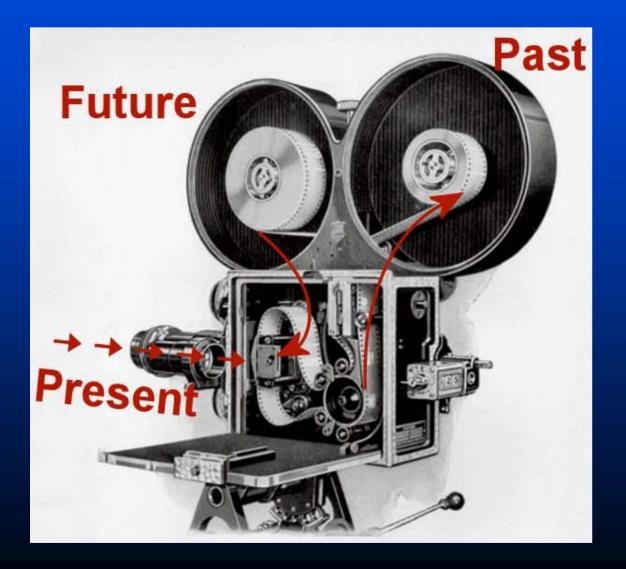
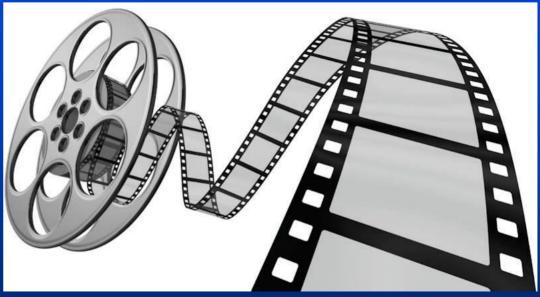

Numerous information modalities (channels) available:

Image of Real World - Experience of Perception as Recorded Data

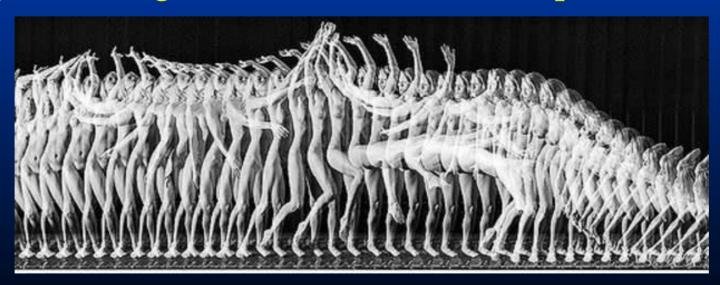

Recording a representation of the real world (actuality)


Level	Dimension	St	atic	Dyna	amic
Acoustic/Sonic	M/L ⁴	4	Sound	∢′	Audio
Optic/Iconic	IL ²		Image	O'	Video
Text/Graphic	XL	Χ	Drawing	X'	Animation
Math/Symbolic	#L	#	Expression	#'	Procedure
Digital facsimile/Informatic	ΦĽ	ф	Data	φ′	Program

4-Dimensional Spacetime as a 3-d Movie

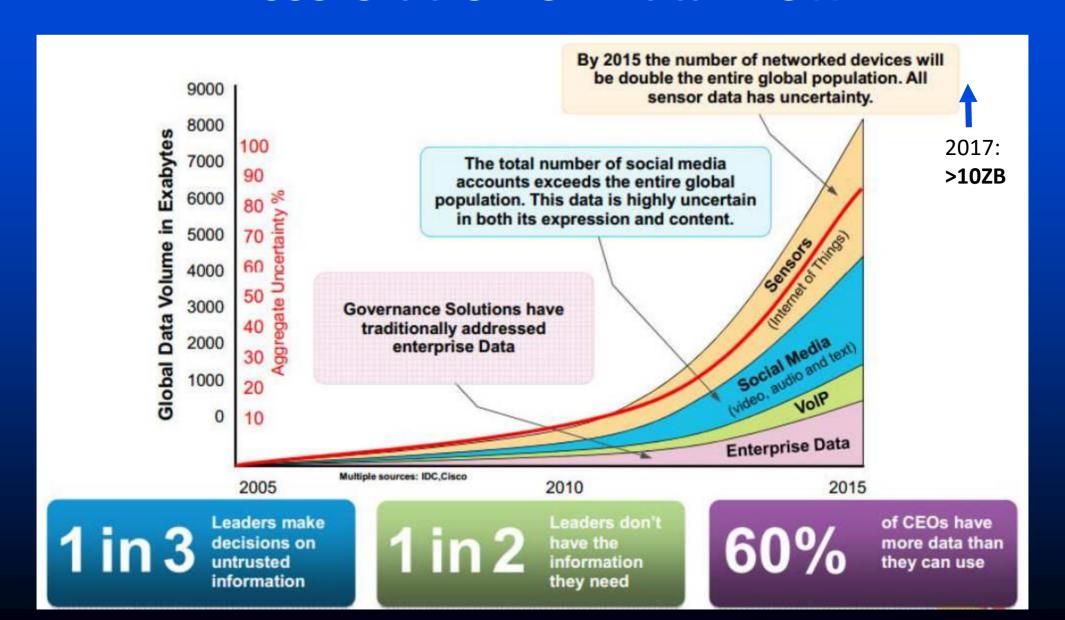
Experience of Spacetime as Cinematography

Sensory experience as making a recording; "remembering" as playing it back.


Dynamics of Experiential Knowledge

- Awareness of the Passage of Time
- Duality of Awareness (Present/Past; Self/Other)
- Just a neurological recording that will fade away over time?

Passage of Time in 4-Dimensional Space


- Reality as 4-d recording, as it is being created from moment to moment. We only experience the present moment.
- Possibility of a Permanent Past, which continues to exist (we just no longer have the same access to past as we do to present)

Data Content of Your Life

- Consider the possibility that everyone knows everything. Like telepathically identifying a person's reality when face to face.
- Suppose each person has the potential ability to know anything about another person's life.
- Attempting deception would be pointless
- A logical basis for sincerity, honesty, non-denial, truthfulness: NO PRIVACY!

Acceleration of Data Flow

Data Content of Your Life

Information Content of a Person's Lifetime							
in terms of	f:			Audio	Video		
Amount o	f data stora	ge required fo	or 24/7 recording	(1MB/min)	(1GB/hr)		
Years	Days	Hours	Minutes	MP3 (TB)	MP4 (TB)		
1	365	8,754	525,240	0.5	8.8		
10	3,648	87,540	5,252,400	5	88		
20	7,295	175,080	10,504,800	11	175		
30	10,943	262,620	15,757,200	16	263		
40	14,590	350,160	21,009,600	21	350		
50	18,238	437,700	26,262,000	26	438		
60	21,885	525,240	31,514,400	32	525		
70	25,533	612,780	36,766,800	37	613		
80	29,180	700,320	42,019,200	42	700 TE		
90	32,828	787,860	47,271,600	47	788		
100	36,475	875,400	52,524,000	53	875		

Personal Data Volume

Value Metric 1000^{1} kilobyte kB 1000^{2} MB megabyte 1000^{3} GB gigabyte 1000⁴ TB terabyte 1000⁵ petabyte 1000⁶ EB exabyte 1000 ZB zettabyte 1000⁸ yottabyte

Estimated

Storage Capacity:

"3 to 12 Exabytes"

Cost: \$4B

Power/yr: \$40M (65MW)

administrative support staff, which is expected to be less than 200 employees.

This June 6, 2013, photo, shows an aerial view of the NSA's Utah Data Center in Bluffdale. Utah The nation's new billion-dollar epicenter for fighting global cyberthreats sits just south of Salt Lake City, tucked away on a National Guard base at the foot of snow-capped mountains, The long, squat buildings span 1.5 million square feet, and are filled with super-powered computers designed to store massive amounts of information gathered secretly from phone calls and emails. (Photo:

· Why Utah?: Lots of water for cooling massive servers, low utility rates, workforce and low potential for extreme weather-related disasters. There's also room for expansion.

He explains the distinction between shadow government and deep state

New: CIA Agent Whistleblower Risks All To Expose The Shadow Government

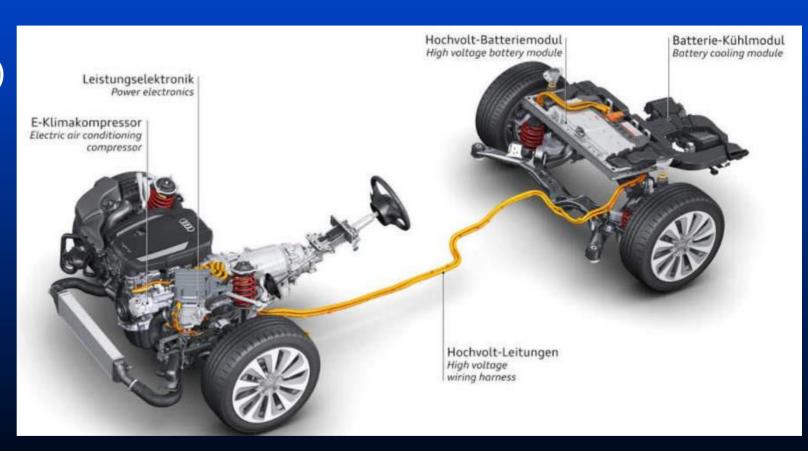
Dane Wigington

Big Data: Storage Requirements for Records on All People

Personal Data Volume

100TB	per person	1TB	per person	1GB	per person
100PB	x1000	1PB	x1000	1TB	x1000
100EB	x1000000	1EB	x1000000	1PB	x1000000
100ZB	x1000000000	1ZB	x1000000000	1EB	x1000000000
1YB	10 billion people	0.01YB	10 billion people	10EB	10 billion people

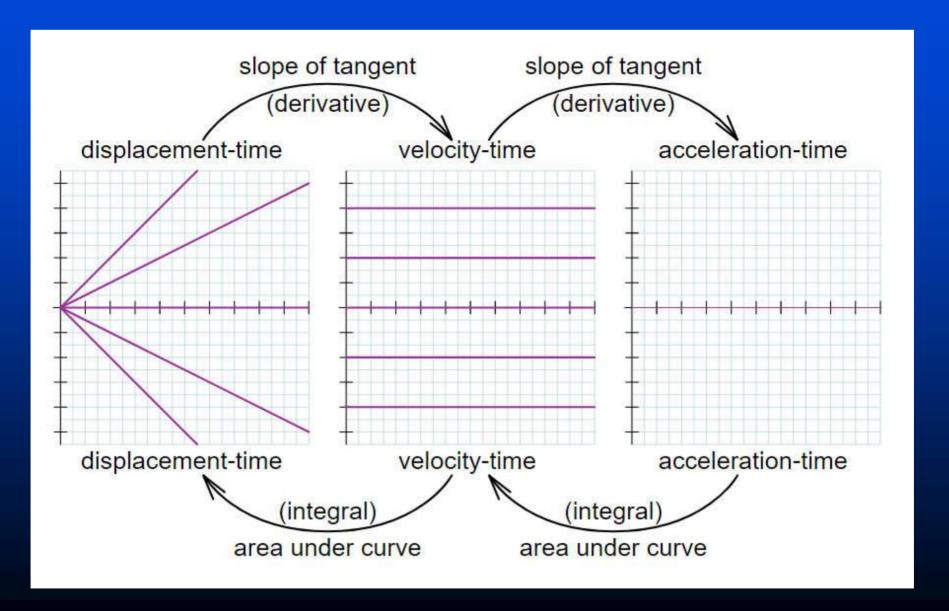
Causality - Transmission of Influence

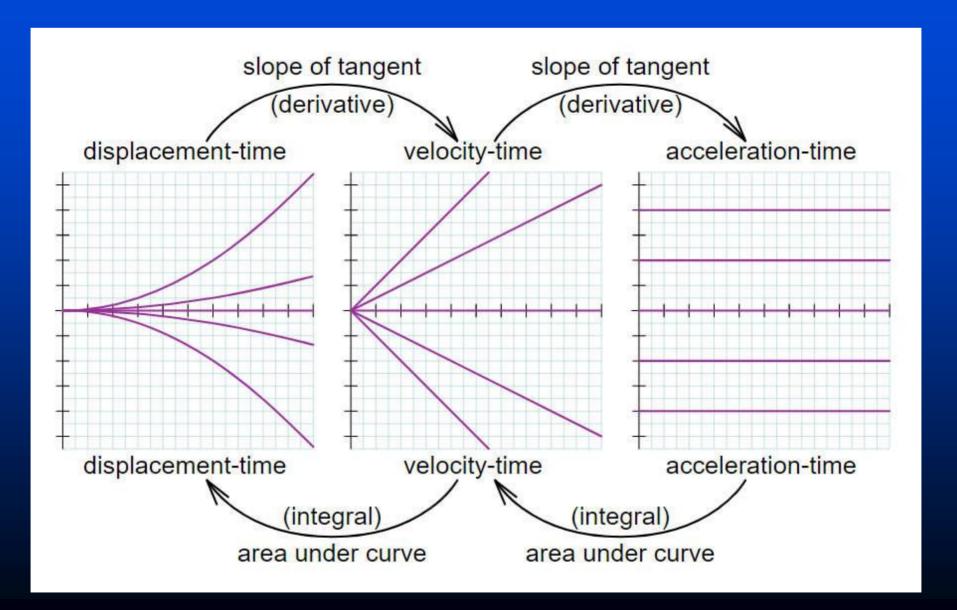

Paradox of Unbroken Chain of Causal Events

- If there is a reason for everything, and nature operates according to fixed laws, do we have free will?
- Stochastic Determinism
- Chaotic processes:
 Sensitive Dependence on Initial Conditions (SDIC)
- Free Will: is it engaged, or are you a creature of habit?
- Many people are running on autopilot

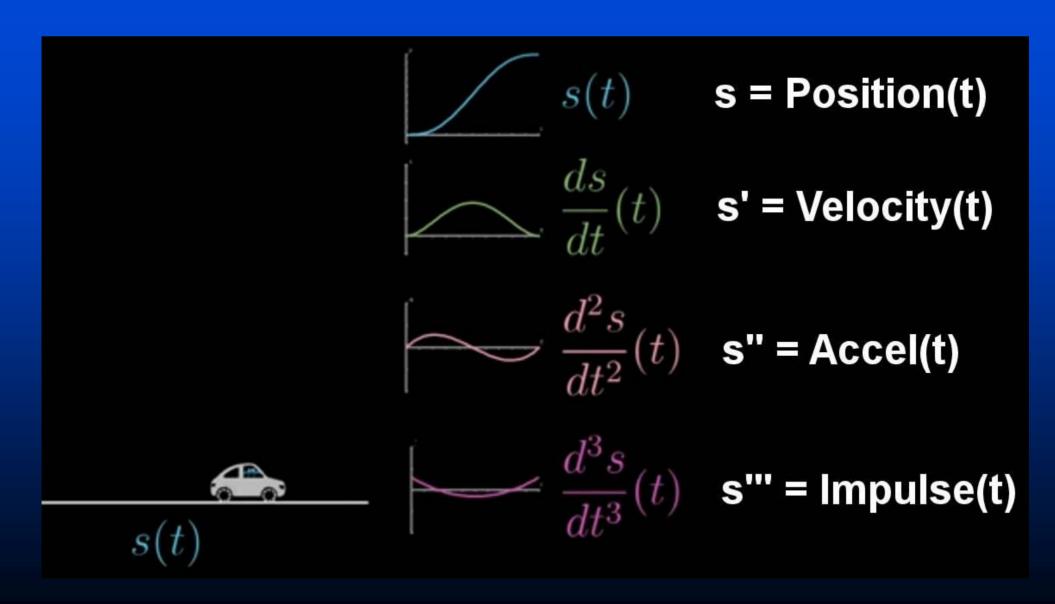
Will as Power Train of a Vehicle

Power/Drive Train Parameters – Emotive force as voltage field


- Direction (Steering)
- Forward/Reverse (Gear)
- Speed (Velocity)
- Effective engagement of Will also requires sufficient torque to match the load and to overcome impedance.


Paradox of Change from Zero Position

- The transition from stationary to in motion:
- Change in position from stationary at x_1 (x_1 =0 for a long time) to a new stationary position implies movement: $x_1 \rightarrow x_1 + \Delta x$ implies $\Delta^n x$ changes from zero to non-zero
- If x changes from 0 to 1, then Δx changes 0 to 1
- If Δx changes from 0 to 1, then $\Delta^2 x$ changes 0 to 1
- If $\Delta^2 \mathbf{x}$ changes 0 to 1, then $\Delta^3 \mathbf{x}$ changes 0 to 1, etc
- To consider: is Δx^n a cause or an effect?

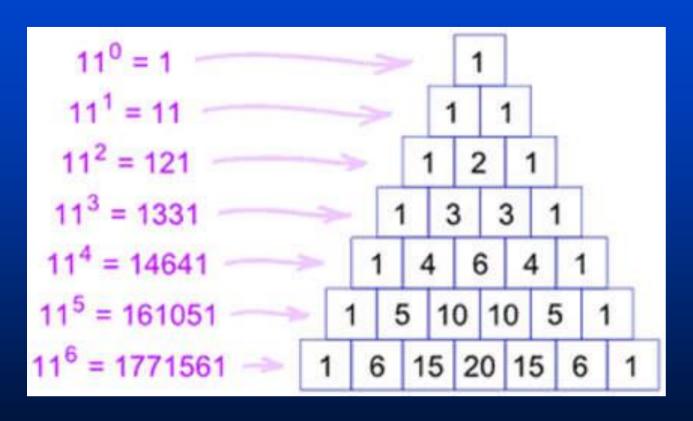

First 2 derivatives of position (wrt time)

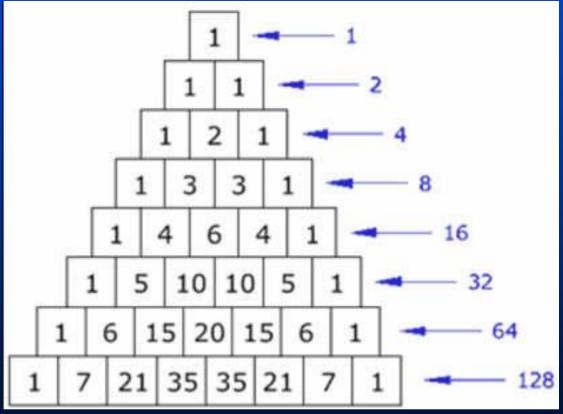
First 2 derivatives of position (wrt time)

First 3 derivatives of position (wrt time)

Differential Grid (\Delta x midway between x & x = 1)

211218		Diffe	rentia	ls						
Difference Ord	er:	1	2	3	4	5	6	7	8	9
Derivative:		Δx/Δt	$\Delta^2 x/\Delta t^2$	$\Delta^3 x/\Delta t^3$	$\Delta^4 x/\Delta t^4$	$\Lambda^5 x/\Lambda t^5$	$\Lambda^6 x/\Lambda t^6$	$\Delta^7 x/\Delta t^7$	$\Lambda^8 x / \Lambda t^8$	$\Delta^9 x/\Delta t^9$
AND THE RESIDENCE AND	V	X'	X"	X'''	X""	X"""	X'''''	X"""	X''''''	x''''''
<u>t</u>	X	X	X	X	X	X	X	X	X	X
0	1	100								
	1323	0	948							
1	1		0							
0.500	115	0		0						
2	1		0		0					
		0		0		0				
3	1		0		0		0			
		0		0		0		0		
4	1		0		0		0		0	
		0		0		0		0		0
5	1		0		0	1 1 111	0		0	
2005.54	317	0		0		0		0		1
6	1		0		0	100	0		1	978
		0		0		0		1		-8
7	1		0		0		1		-7	
		0	200	0		1	ā	-6		28
8	1		0	O	1	, E.;	-5	-0	21	20
O	1	0	U	1	į.	-4	-5	15	21	-56
9	4	U	4		2	-4	10	10	25	-50
9	1	4	1	0	-3	_	10	20	-35	70
		1	116	-2	•	6	40	-20	0.5	70
10	2	-	-1	9684	3	10	-10	0.00	35	
		0		1		-4		15		-56


Differential Grid


					Diffe	rentia	ls						
	Diffe	renc	e Ord	er:	1	2	3	4	5	6	7	8	9
	Derivative:				$\Delta x/\Delta t$	$\Delta^2 x/\Delta t^2$	$\Delta^3 x/\Delta t^3$	$\Delta^4 x/\Delta t^4$	$\Delta^5 x/\Delta t^5$	$\Delta^6 x/\Delta t^6$	$\Delta^7 x/\Delta t^7$	$\Delta^8 x/\Delta t^8$	$\Delta^9 x/\Delta t^9$
			t	X	x'	x"	x'''	x''''	x''''	X'''''	x'''''	x'''''	x''''''
		-	0	1	10 A.S.	***				infolio .		- 53	
			1	1	0			cc				•	
			2	1	0	0	D	iffere	ntial	Pasc	cal Ir	'iang	le
			3	1	0	0	0						
			4	1	0	0	0	0					
			5	1	0	0	0	0	0				
			6	1	0	0	0	0	0	0			
			7	1	0	0	0	0	0	0	0		
			8	1	0	0	0	0	0	0	0	0	
'ascal's	Triand	rla.		1	0	0	0	0	0	0	0	0	0
The state of the s				1	0	0	0	0	0	0	0	0	0
and how	it's form	ned!		2	1	1	1	1	1	1	1	1	1
	1			3	1	0	-1	-2	-3	-4	-5	-6	-7
1	. 1			4	1	0	0	1	3	6	10	15	21
	+			5	1	0	0	0	-1	-4	-10	-20	-35
\+/	2 +	,1		6	1	0	0	0	0	1	5	15	35
1 + 3	_ 3	1		7	1	0	0	0	0	0	-1	-6	-21
4	6	1	1	8	1	0	0	0	0	0	0	1	7
5 10	10	1	1	9	1	0	0	0	0	0	0	0	-1
/ +/ \	+/14	1	1	10	1	0	0	0	0	0	0	0	0
15	20 1	5 6) 1	12	2	1	1	1	1	1	1	1	1
21 35	35	21	7 1	14	2	0	-1	-2	-3	-4	-5	-6	-7

Differential Grid (closer view)

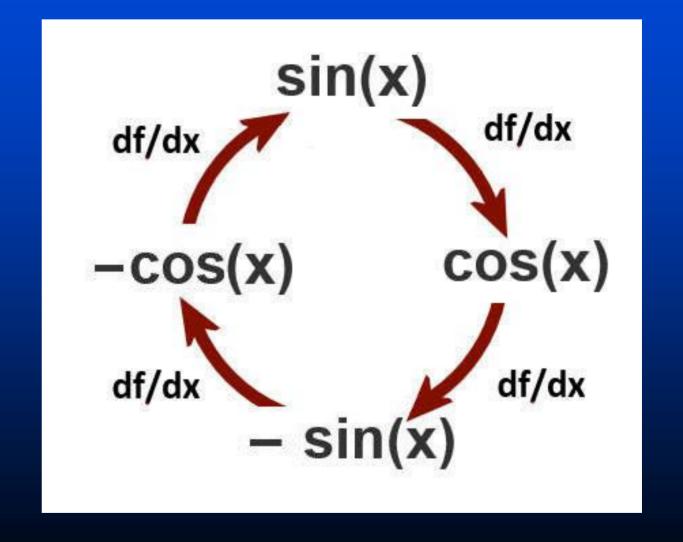
			Diffe	rentia	ls						
	Difference O	rder:	1	2	3	4	5	6	7	8	9
	Derivative:		$\Delta x/\Delta t$	$\Delta^2 x/\Delta t^2$	$\Delta^3 x/\Delta t^3$	$\Delta^4 x/\Delta t^4$	$\Delta^5 x/\Delta t^5$	$\Delta^6 x/\Delta t^6$	$\Delta^7 x/\Delta t^7$	$\Delta^8 x/\Delta t^8$	$\Delta^9 x/\Delta t^9$
	t	X	x'	X "	X'''	X''''	X''''	X'''''	X'''''	X''''''	X'''''
	10	1	0	0	0	0	0	0	0	0	0
	11	2	1	1	1	1	1	1	1	1	1
	12	3	1	0	-1	-2	-3	-4	-5	-6	-7
	13	4	1	0	0	1	3	6	10	15	21
	scal's Triangle		1	0	0	0	-1	-4	-10	-20	-35
8	and how it's forme	d!	1	0	0	0	0	1	5	15	35
	1		1	0	0	0	0	0	-1	-6	-21
	1 + 1		1	0	0	0	0	0	0	1	7
	1 + 2 + 1		1	0	0	0	0	0	0	0	-1
1	+3+3+	1	1	0	0	0	0	0	0	0	0
1	+ 4 + 6 + 4	+_1	2	1	1	1	1	1	1	1	1
+/	5 + 10 + 10 +	5 + 1	2	0	-1	-2	-3	-4	-5	-6	-7
6	15 20 15	6 1	2	0	0	1	3	6	10	15	21

Pascal's Triangle interesting patterns

Differential Grid

			Diffe	rentia	ls						
Difference	e Ord	der:	1	2	3	4	5	6	7	8	9
Derivativ			Δx/Δt	$\Delta^2 x/\Delta t^2$	$\Delta^3 x/\Delta t^3$	$\Delta^4 x/\Delta t^4$	$\Delta^{5}x/\Delta t^{5}$		$\Delta^7 x/\Delta t^7$	$\Delta^8 x/\Delta t^8$	$\Delta^9 x/\Delta t^9$
Delivativ	ACCOUNTS OF	V	х'	X"	X'''	X""	X"""	X'''''	X""""	X''''''	X''''''
	t	X	12		0.000	V 2000.	10	A17 A11			
	19	10	1_	0	0	0	0	0	0	0	0
	20	12	2	-1_	1	1	1	1	1	1	1
	21	14	2	0	1	-2	-3	-4	-5	-6	-7
	22	16	2	0	0	1_	3	6	10	15	21
	23	18	2	0	0	0	1	-4	-10	-20	-35
	24	20	2	0	0	0	0	1	5	15	35
	25	22	2	0	0	0	0	0	-1	-6	-21
	26	24	2	0	0	0	0	0	0	1	7
	27	26	2	0	0	0	0	0	0	0	1
	28	28	2	0	0	0	0	0	0	0	0
	29	30	2	0	0	0	0	0	0	0	0
	30	30	0	-2	-2	-2	-2	-2	-2	-2	-2
	31	28	-2	2	0	2	4	6	8	10	12
	32	26	-2	0	2	2	0	-4	-10	-18	-28
	33	24	-2	0	0	-2	-4	-4	0	10	28
	34	22	-2	0	0	0	. 2	6	10	10	0
	35	20	-2	0	0	0	0.	2	-8	-18	-28
	36	18	-2	0	0	0	0	0	_2	10	28
	37	16	-2	0	0	0	0	0	0	2	-12
	38	14	-2	0	0	0	0	0	0	0	. 2
	39	12	-2	0	0	0	0	0	0	0	0
	40	10	-2	0	0	0	0	0	0	0	0
	41	8	-2	0	0	0	0	0	0	0	0

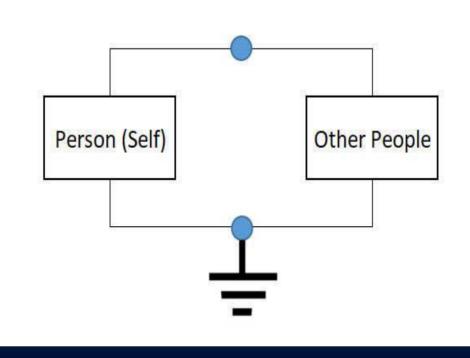
Paradox of Change from Zero Position

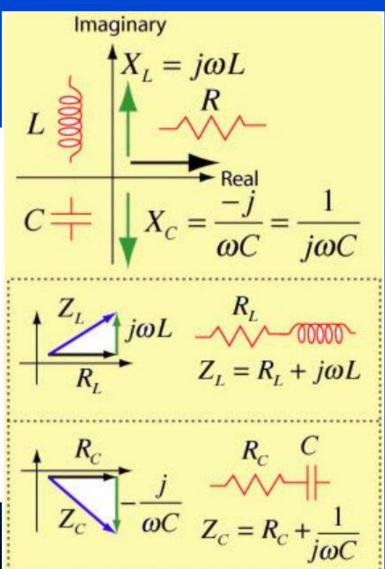

- If Δx changes, then $\Delta^2 x$ changes
- If $\Delta^2 x$ changes, then $\Delta^3 x$ changes, etc (where does it end?)

Resolution:

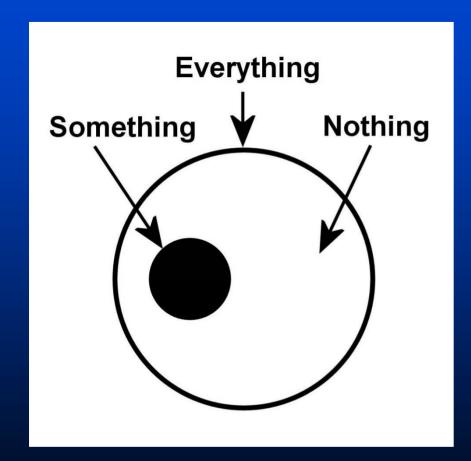
- 1. Everything is always in motion
- 2. Motion includes oscillating component (e.g. vibration)
- 3. Higher order derivatives of sinusoidal functions are sinusoidal

Paradox of Change from Zero Position

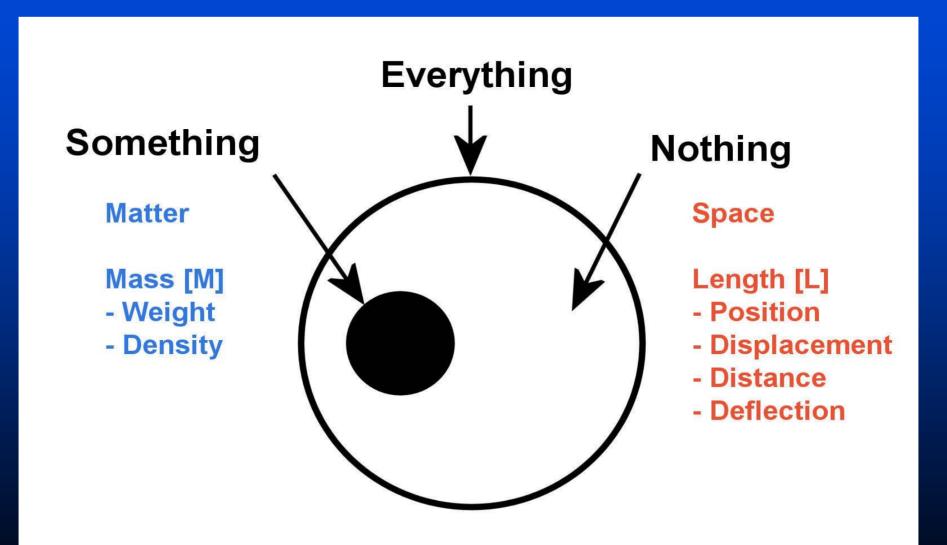

f(x)=	sin(x)
f'(x)=	cos(x)
f"(x)=	- sin(x)
f'''(x)=	- cos(x)
$f^{(4)}(x) =$	sin(x)
$f^{(5)}(x) =$	cos(x)
$f^{(6)}(x) =$	- sin(x)
$f^{(7)}(x) =$	- cos(x)
$f^{(8)}(x)=$	sin(x)



System Modeling


Divide E.		Remaind	ler
i	5 ÷ 4	1	i ¹
i^6	6 ÷ 4	2	i^2
i^7	7 ÷ 4	3	i ³
i ⁸	8 ÷ 4	0	i^0
i^9	9 ÷ 4	1	i^1
<i>i</i> ¹⁰	10÷ 4	2	i^2
i^{II}	11÷ 4	3	i^3
i ¹²	12÷ 4	0	i^0
i^k	12÷ 4	r	i

www.mathwarehouse.com



Duality

Duality

Duality – Space/Time

	Motion	
[L]	Translation	[L/T]
	Velocity	
	Placement	
[A]	Rotation	[A/T]
	Cycle, Revolutions	
	Oscillation, Spin, Vibration	
	Process	
[X]	Procedure	[X/T]
	Rearrangement	
	Join/Split, Attach/Detach	
[S]	Transform	[S/T]
	Deflection	
	Stretch/Squeeze	
	[A]	[L] Translation Velocity Placement [A] Rotation Cycle, Revolutions Oscillation, Spin, Vibration Process [X] Procedure Rearrangement Join/Split, Attach/Detach [S] Transform Deflection

- Based on constitutive equations in the form of ordinary second-order differential equations of dynamics
- Mathematical isomorphism is found at all levels of energetic transfer

Action Level

Rotational

 $T=J\alpha+D_r\omega+K_r\theta$

Mechanical

F=Ma+Dv+Kx

Solid-Mechanical

 $\tau = \rho \epsilon'' + \mu_{\rho} \epsilon' + E \epsilon$

Hydraulic

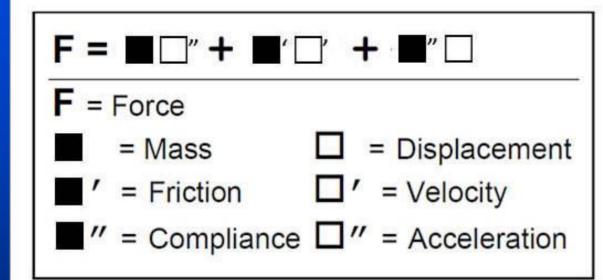
 $p=pq'+R_fq+A_f/C_f$

Acoustic

 $p=1\xi''+R_a\xi'+s\xi$

Electrical

E=Li'+Ri+q/C


Magnetic

F=Jo'+Ro+jodt/G

Thermal

 $\tau = I_T q_T' + R_T q_T + w_T/C_p$

Analogy in Physical Action: The Constitutive Equations of Motion

The prototype constitutive formula. A second-order ordinary linear differential equation as a model for energetic transfer. This example uses variables from the mechanical level.

Impedance, as the triple [, , , , , , , ,]

can be represented as its inverse, admittance, with the inverse of resistance (the real component of impedance) as conductance, and the inverse of reactance (both inductive and capacitive) as susceptance.

$$Z=X_L+R+X_C$$
 $Y=B_L+G+B_C$

The complex terms (reactance) are sometimes combined and expressed as:

$$Z = R + jX$$

with:

$$X_L = \omega L = 2\pi f L$$

$$X_C=1/\omega C=1/2\pi fC$$

$$X = X_L - X_C$$

Symbol Conventions

Voltage = ● ()" + ●' ()' + ●" ()

Symbol Convention:

$$= [M]$$

$$\bigcirc$$
 = [Q]

= Electrical Inductance (L)

Motion $(L/T^p) = \square$ \square' \square''

Electrical Current (I = $[Q/T^p]$) = \bigcirc \bigcirc '

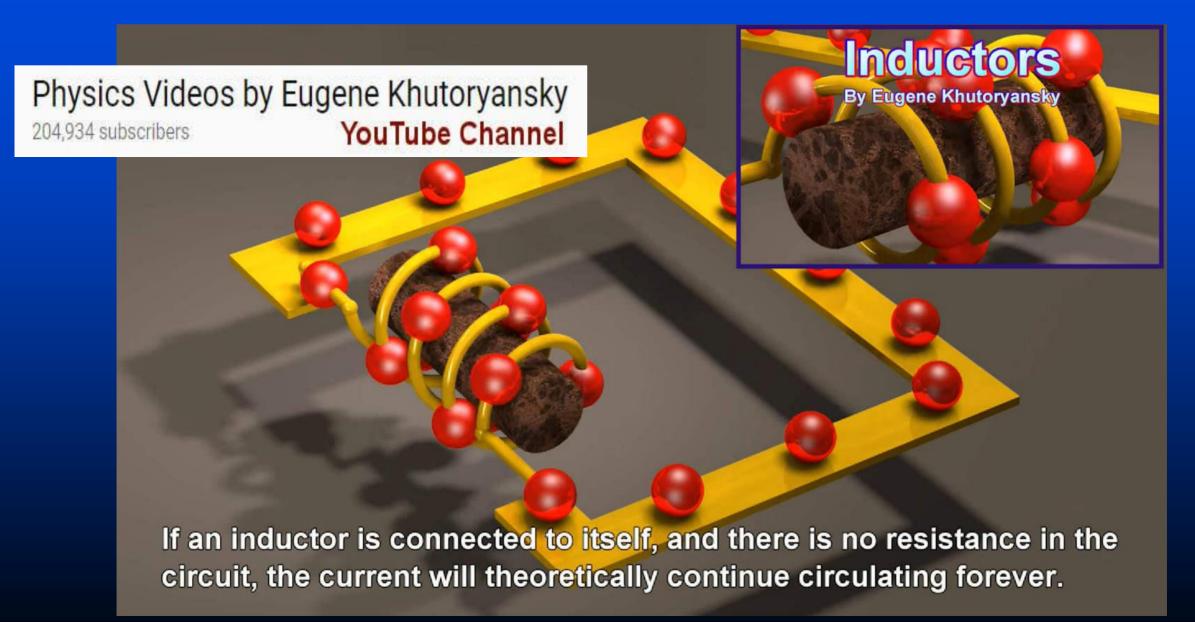
Mechanical Impedance (Z = [M/T^p]) = (() "

Force =

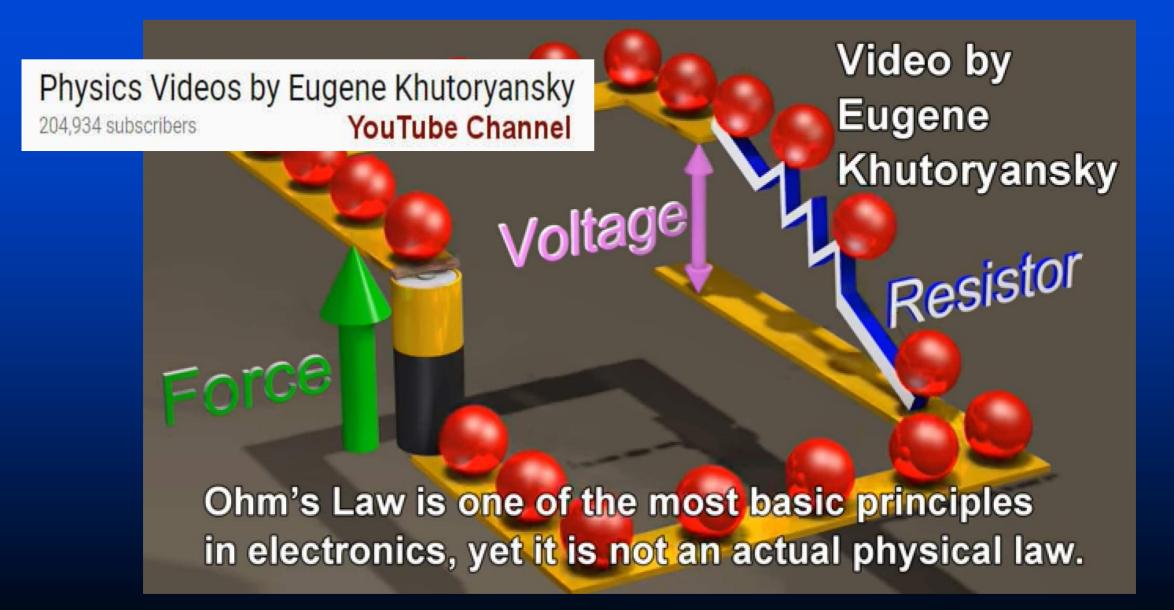
Electrical Impedance ($Z = [ML^2/Q^2T^p] = \bigcirc$ \bigcirc \bigcirc \square

Prior/Alternate Symbol Convention			
Dimension	Early	Recent	Current
[L]		0	
[M]	0		
[Q]		0	0
$[ML^2/Q^2]$	0		•

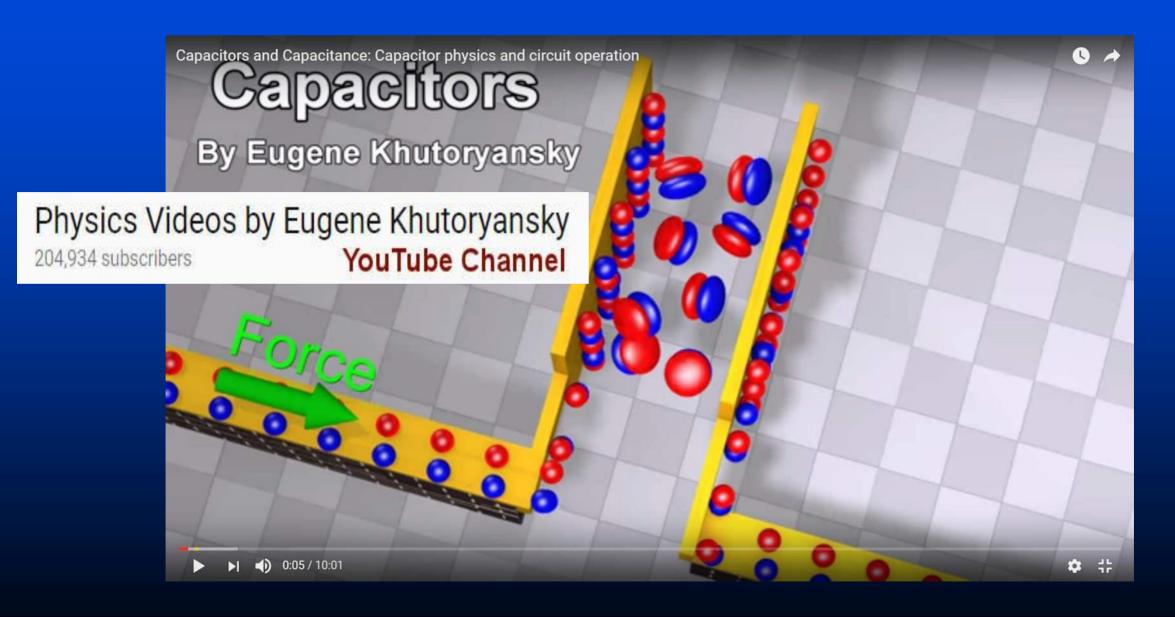
Analogy – Mathematical Isomorphism


Analogy in Phys	ical Action									
	Force		Motion		X		Impedance			
Action Level	Pressure		Flow		Inductance		Resistance		Capacitance	"
Rotational $T = J\alpha + D_r\omega + K_r\theta$	Torque T	$[ML^2A/T^2]$	Angular Velocity ω	[A/T]	Rotational Inertia	[ML ²]	Rotational Drag D _r	[ML ² /T]	Torque Constant K _r	$[ML^2/T^2]$
Mechanical F=Ma+Dv+Kx	Force F	[ML/T ²]	Velocity v	[L/T]	Mass M	[M]	Friction D	[M/T]	Spring Constant K	[M/T ²]
Solid-Mechanical $\tau = \rho \epsilon'' + \mu_{\rho} \epsilon' + E \epsilon$	Stress T	[M/LT ²]	Strain Rate	[1/T]	Density ρ	[M/L]	Rigidity μ_{P}	[M/LT]	Modulus of Elasticity E	[M/LT ²]
Hydraulic $p=pq'+R_fq+A_f/C_f$	Pressure p	[M/LT ²]	Flow	[L ² /T]	Density ρ	[M/L ³]	Fluid Resistance $\mathbf{R}_{\mathbf{f}}$	[M/T]	1/Fluid Capacitance 1/C _f	$[M/L^3T^2]$
Acoustic $p=1\xi''+R_a\xi'+s\xi$	Acoustic Pressure	$[M/L^3T^2]$	Diaphragm Velocity ξ'	[L/T]	Acoustic Inertance	[M/L ⁴]	Acoustic Resistance $\mathbf{R}_{\mathbf{a}}$	[M/L ⁴ T]	Stiffness s	$[M/L^4T^2]$
Electrical E=Li'+Ri+q/C	Voltage E	$[ML^2/QT^2]$	Current i	[Q/T]	Inductance L	$[ML^2/Q^2]$	Resistance R	$[ML^2/Q^2T]$	1/Capacitance 1/C	$[ML^2/Q^2T^2]$
Magnetic $F = \int \Phi' + \int \Phi + \int \Phi dt / C$	Magnetomotive Force ₹	[Q/T]	Flux ф	[ML ² /QT]	Magnetic Inductance	[Q ² T/ML ²]	Reluctance	$[Q^2/ML^2]$	1/Magnetic Capacitance	$[Q^2/ML^2T]$
Thermal $\tau = I_T q_T' + R_T q_T + w_T/C_p$	Temperature Difference τ	$[ML^2/T^2] = [K]$	Heat Flow q _T	[H/T]	Thermal Inductance	[KT ² /H]	Thermal Resistance \mathbf{R}_{T}	[KT/H]	1/Thermal Capacitance 1/C _p	[K/H]

The Rosetta Stone for Physics


Action Level	Pressure	00 00	Flow	######################################
Rotational	Torque	$[ML^2A/T^2]$	Angular Velocity	[A/T]
$T=J\alpha+D_r\omega+K_r\theta$	Ĭ.		ω	
Mechanical	Force	[ML/T ²]	Velocity	[L/T]
F=Ma+Dv+Kx	F		V	
Solid-Mechanical	Stress	[M/LT ²]	Strain Rate	[1/T]
τ =ρε"+ μ _ρ ε'+Εε	τ		ε'	
Hydraulic	Pressure	[M/LT ²]	Flow	[L ² /T]
$p=pq'+R_fq+A_f/C_f$	p		q	
Acoustic	Acoustic Pressure	$[M/L^3T^2]$	Diaphragm Velocity	[L/T]
$p=1\xi''+R_a\xi'+s\xi$	р		ξ'	
Electrical	Voltage	$[ML^2/QT^2]$	Current	[Q/T]
E=Li'+Ri+q/C	E		i	CF 0000 04 001 11
Magnetic	Magnetomotive Force	[Q/T]	Flux	[ML ² /QT]
F=Jq'+Rq+/qd+/G	F		ф	
Thermal	Temperature Difference	$[ML^2/T^2]=[K]$	Heat Flow	[H/T]
$\tau = I_T q_T' + R_T q_T + w_T/C_p$	τ	() () () () () () () () () ()	\mathbf{q}_{T}	100

		Impedanc	e		01
Inductance		Resistance		Capacitance	"
Rotational Inertia	[ML ²]	Rotational Drag D _r	[ML ² /T]	Torque Constant K _r	$[ML^2/T^2]$
Mass M	[M]	Friction D	[M/T]	Spring Constant K	[M/T ²]
Density P	[M/L]	Rigidity μ_p	[M/LT]	Modulus of Elasticity E	[M/LT ²]
Density P	[M/L ³]	Fluid Resistance R _f	[M/T]	1/Fluid Capacitance 1/C _f	$[M/L^3T^2]$
Acoustic Inertance	[M/L ⁴]	Acoustic Resistance R _a	[M/L ⁴ T]	Stiffness s	[M/L ⁴ T ²]
Inductance L	$[ML^2/Q^2]$	Resistance R	$[ML^2/Q^2T]$	1/Capacitance 1/C	$[ML^2/Q^2T^2]$
Magnetic Inductance	[Q ² T/ML ²]	Reluctance	$[Q^2/ML^2]$	1/Magnetic Capacitance	[Q ² /ML ² T]
Thermal Inductance	[KT ² /H]	Thermal Resistance	[KT/H]	1/Thermal Capacitance 1/C _p	[K/H]


Excellent Illustration of Electronics

Excellent Illustration of Electronics

Excellent Illustration of Electronics

	Force	42	Motion	550
Action Level	Pressure		Flow)
Rotational	Torque	[ML ² A/T ²]	Angular Velocity	[A/T]
$T=J\alpha+D_r\omega+K_r\theta$	Ţ		ω	
Mechanical	Force	[ML/T ²]	Velocity	[L/T]
F=Ma+Dv+Kx	F	of the special of the	V	1 100 to tell
Solid-Mechanical	Stress	[M/LT ²]	Strain Rate	[1/T]
τ =ρε"+ μ _ρ ε'+Εε	τ	25	ε'	9
Hydraulic	Pressure	[M/LT ²]	Flow	$[L^2/T]$
$p=pq'+R_fq+A_f/C_f$	p		q	
Acoustic	Acoustic Pressure	[M/L ³ T ²]	Diaphragm Velocity	[L/T]
$p=1\xi''+R_a\xi'+s\xi$	р		ξ'	
Electrical	Voltage	$[ML^2/QT^2]$	Current	[Q/T]
E=Li'+Ri+q/C	E		i	
Magnetic	Magnetomotive Force	[Q/T]	Flux	$[ML^2/QT]$
F=Jq'+ & +/\pdt/C	Ŧ		ф	(SC) (SC) (SC)
Thermal	Temperature Difference	$[ML^2/T^2]$ =[K]	Heat Flow	[H/T]
$\tau = I_T q_T' + R_T q_T + w_T/C_p$	τ		q _T	

	Force	£0	Motion	-
Action Level	Pressure		Flow	
Rotational	Torque	[ML ² A/T ²]	Angular Velocity	[A/T]
$T=J\alpha+D_r\omega+K_r\theta$	Ţ		ω	
Mechanical	Force	[ML/T ²]	Velocity	[L/T]
F=Ma+Dv+Kx	F		V	
Solid-Mechanical	Stress	[M/LT ²]	Strain Rate	[1/T]
τ=ρε"+μ _ρ ε'+Εε	τ		ε'	
Hydraulic	Pressure	[M/LT ²]	Flow	[L ² /T]
$p=pq'+R_fq+A_f/C_f$	p		q	
Acoustic	Acoustic Pressure	$[M/L^3T^2]$	Diaphragm Velocity	[L/T]
$p=1\xi''+R_a\xi'+s\xi$	p		ξ'	
Electrical	Voltage	[ML ² /QT ²]	Current	[Q/T]
E=Li'+Ri+q/C	E		L	0 3
Magnetic	Magnetomotive Force	[Q/T]	Flux	[ML ² /QT]
F=Iq'+Kq+/qdt/C	F	1	ф	
Thermal	Temperature Difference	$[ML^2/T^2] = [K]$	Heat Flow	[H/T]
$\tau = I_T q_T' + R_T q_T + w_T/C_p$	τ		q τ	V 25 (8) (340 L

	Force	92	Motion	
Action Level	Pressure		Flow	
Rotational $T=J\alpha+D_r\omega+K_r\theta$	Torque T	$[ML^2A/T^2]$	Angular Velocity ω	[A/T]
Mechanical F=Ma+Dv+Kx	Force F	[ML/T ²]	Velocity v	[L/T]
Solid-Mechanical $\tau = \rho \epsilon'' + \mu_{\rho} \epsilon' + E \epsilon$	Stress	[M/LT ²]	Strain Rate	[1/T]
Hydraulic p=ρq'+R _f q+A _f /C _f	Pressure p	[M/LT ²]	Flow	$[L^2/T]$
Acoustic $p=1\xi''+R_a\xi'+s\xi$	Acoustic Pressure	$[M/L^3T^2]$	Diaphragm Velocity ξ'	[L/T]
Electrical E=Li'+Ri+q/C	Voltage E	[ML ² /QT ²]	Current	[Q/T]
Magnetic <i>F=I</i> ф'+&ф+∫ф&/С	Magnetomotive Force ₹	[0/T]	Flux Φ	[ML ² /QT]
Thermal $\tau = I_{T}q_{T}' + R_{T}q_{T} + w_{T}/C_{p}$	Temperature Differenc τ	$[ML^2/T^2]=[K]$	Heat Flow	[H/T]

	Force		Motion	
Action Level	Pressure		Flow	
Rotational	Torque	$[ML^2A/T^2]$	Angular Velocity	[A/T]
$T=J\alpha+D_r\omega+K_r\theta$	I.		ω	
Mechanical	Force	[ML/T ²]	Velocity	[L/T]
F=Ma+Dv+Kx	F		V	
Solid-Mechanical	Stress	[M/LT ²]	Strain Rate	[1/T]
$\tau = \rho \epsilon'' + \mu_{\rho} \epsilon' + E \epsilon$	τ		ε'	
Hydraulic	Pressure	[M/LT ²]	Flow	$[L^2/T]$
$p=pq'+R_fq+A_f/C_f$	p		q	
Acoustic	Acoustic Pressure	$[M/L^3T^2]$	Diaphragm Velocity	[L/T]
$p=1\xi''+R_a\xi'+s\xi$	p		ξ'	
Electrical	Voltage	[ML ² /QT ²]	Current	[Q/T]
E=Li'+Ri+q/C	E		(d(*)/dt	
Magnetic	Magnetomotive Force	[Q/T]		[ML ² /QT]
F=Jq'+2,q+/qd+/G	F		ф	
Thermal	Temperature Difference	$[ML^2/T^2]=[K]$	Heat Flow	[H/T]
$\tau = I_T q_T' + R_T q_T + w_T/C_p$	τ	Marin Stories de B.C.	q τ	32 101 C-56 1.0

Electromagnetic Field Equations

Electromagnetic

Energy

ML^2/T^2
ML ² /T ²
ML^2/T^2
ML^2/T^2

Energy

5775		Magnetic Force	
	Q/T ²	Q/T	Q
•	Q/LT ²	Q/LT	Q/L
	Q/L ² T ²	Q/L ² T	Q/L ²
Ī	Q/L ³ T ²	Q/L³T	Q/L ³

		Magnetic Flux	
x	ML ² /Q	ML ² /QT	ML ² /QT ²
	ML/Q	ML/QT	ML/QT ²
	M/Q	M/QT	M/QT ²
	M/LQ	M/LQT	M/LQT ²

Maxwell Equations

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

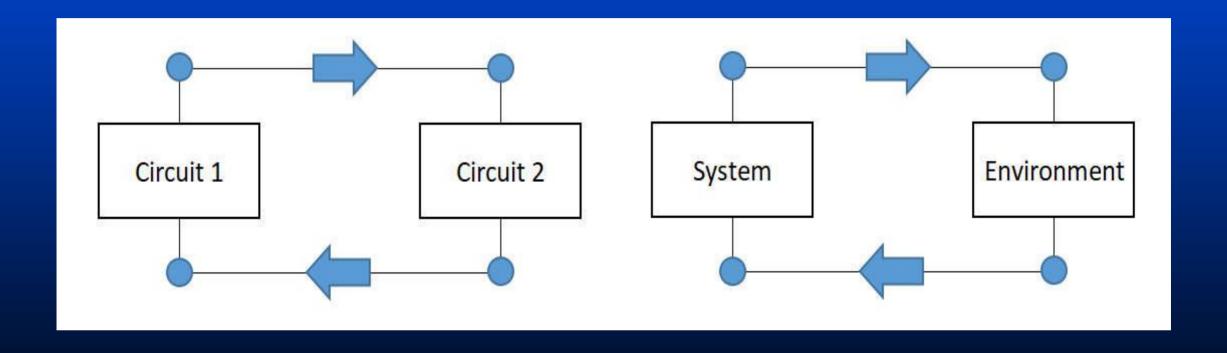
a
Ч

= [H]	
$= [\nabla x H] = [J + D']$	= [D]
$=[\nabla^2H]$	= [∇D]=ρ

F or i

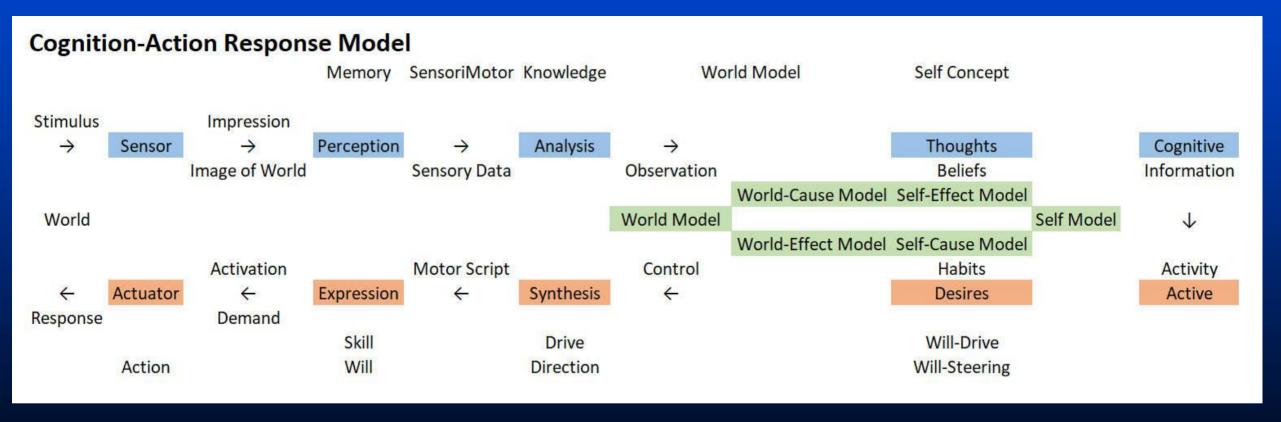
4	= [φ]	=[Voltage]= [φ']				
		=[E]=[∇xV]				
	= [B]	=[∇xE]= [-B']				
	300 9000	$=[\nabla^2 F]$				

Extending the Analo	gy - High	er-	Order :	Space					
	Pressure	40 0		Motion	1	20 00	Ī	mpedanc	e
	ML/T ²	=	L/T ²	L/T	L	X	M	M/T	M/T ²
	ML/T ²		L ⁵ /T ²	L ⁵ /T	L ⁵		M/L ⁴	M/L ⁴ T	M/L ⁴ T ²
	ML/T ²		L ⁴ /T ²	L⁴/T	L ⁴		M/L ³	M/L ³ T	M/L^3T^2
	ML/T ²		L ³ /T ²	L ³ /T	L ³		M/L ²	M/L ² T	M/L^2T^2
	ML/T ²		L ² /T ²	L ² /T	L ²		M/L	M/LT	M/LT ²
Mechanical Force	ML/T ²	=	L/T ²	L/T	L	X	M	M/T	M/T ²
	ML/T ²		1/T ²	1/T	1		ML	ML/T	ML/T ²
	ML/T ²		1/LT ²	1/LT	1/L		ML ²	ML ² /T	ML^2/T^2
	ML/T ²		1/L ² T ²	1/L ² T	1/L ²		ML ³	ML ^{3/} T	ML^3/T^2
	ML/T ²		1/L ³ T ²	1/L ³ T	1/L ³		ML ⁴	ML ⁴ /T	ML^4/T^2
Acoustic Pressure	M/L ³ T ²		L/T ²	L/T	L		M/L ⁴	M/L ⁴ T	M/L ⁴ T ²
Hydraulic Pressure	M/LT ²		L ² /T ²	L ² /T	L ²		M/L ³	M/L ³ T	M/L ³ T ²
Solid-Mechanical Stress	M/LT ²		1/T ²	1/T	1		M/L	M/LT	M/LT ²
Rotational Torque	ML ² A/T ²		A/T ²	A/T	Α		ML ²	ML ² /T	ML ² /T ²

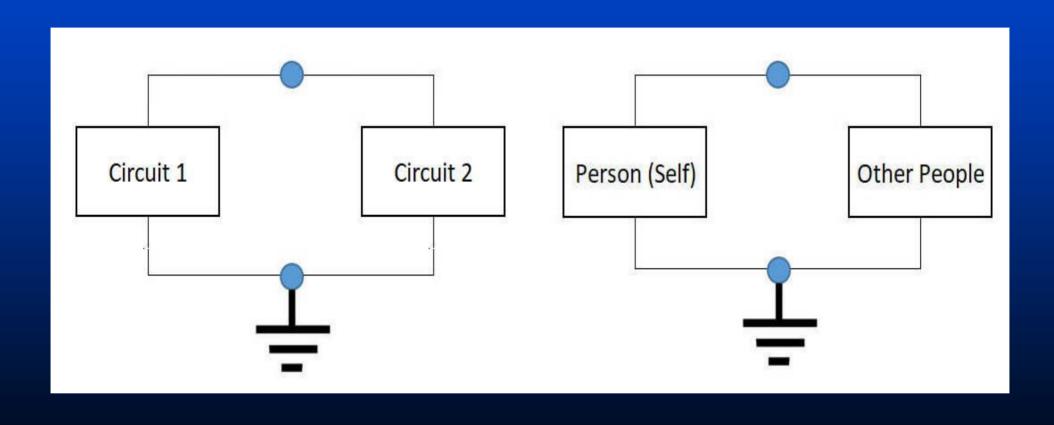

Extending the Analogy - 3rd-Order Derivatives **Impedance** Motion Pressure M/T^2 ML/T² M/T³ MT M M/T X L^5/T^2 L⁵ M/L^4T^2 ML/T² L^5/T^3 L⁵/T TL⁵ M/L^4T^3 MT/L4 M/L4 M/L4T L^4/T^2 M/L^3T^2 L4/T TL4 M/L^3T^3 ML/T² L^4/T^3 MT/L³ M/L^3 M/L3T M/L^2T^2 L^3/T^2 L3/T TL^3 ML/T² L^3/T^3 MT/L2 M/L^2 M/L2T M/L^2T^3 ML/T² L2/T TL^2 L^2/T^3 L^2/T^2 M/LT² M/L M/LT³ MT/L M/LT Solid-Mechanical M/T^2 M/T³ ML/T² L/T³ L/T² L/T M/T TL MT M Mechanical Force X ML/T² ML/T³ ML/T² 1/T3 1/T2 1/T ML ML/T ML ML^2/T^2 ML/T² ML^2/T^3 1/LT³ 1/LT² 1/LT MTL² ML^2 ML²/T 1/L T/L ML^3/T^2 ML/T² 1/L2T3 1/L2T2 1/L2T 1/L2 T/L2 MTL³ ML^3 ML3/T ML^3/T^3 1/L3T3 $1/L^3T^2$ 1/L3T 1/L3 T/L³ MTL⁴ ML^4/T^2 ML^4/T^3 ML/T² ML⁴ ML4/T M/L^3T^2 M/L^4T^2 M/L^4T^3 L/T³ L/T² M/L4 M/L⁴T MT/L4 L/T Acoustic Pressure TL L^2 L^2/T^3 L^2/T^2 L2/T TL^2 MT/L³ M/L^3 M/L^3T^2 M/L^3T^3 M/LT² M/L3T Hydraulic Pressure M/LT² 1/T3 1/T2 M/LT^2 M/L^3T^3 1/T M/LT Solid-Mechanical Stress MT/L M/L A/T² ML^2A/T^2 A/T³ MTL² ML^2 A/T ML2/T **Rotational Torque** AT A

Physical/Logical Analogy

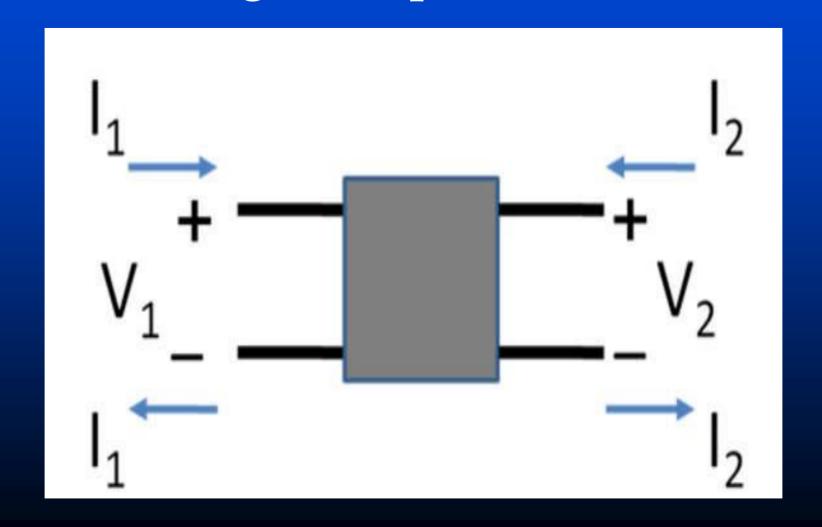
Mass Transfer								
+ OUTPUT	- INPUT							
Material								
Action	Acquisition							
Put, Give	Get, Take							
Transmission	Reception							
DO	GET							
Production	Consumption							
Assemble	Ingest							
Synthesis	Analysis							
MAKE	EAT							


Data Transfer	
+ OUTPUT	- INPUT
Information	
Speak	Hear
Verbal	Auditory
Write	Read
SAY	LISTEN
Show	See
Graphic	Visual
Present	Observe
EXPRESS	PERCEIVE

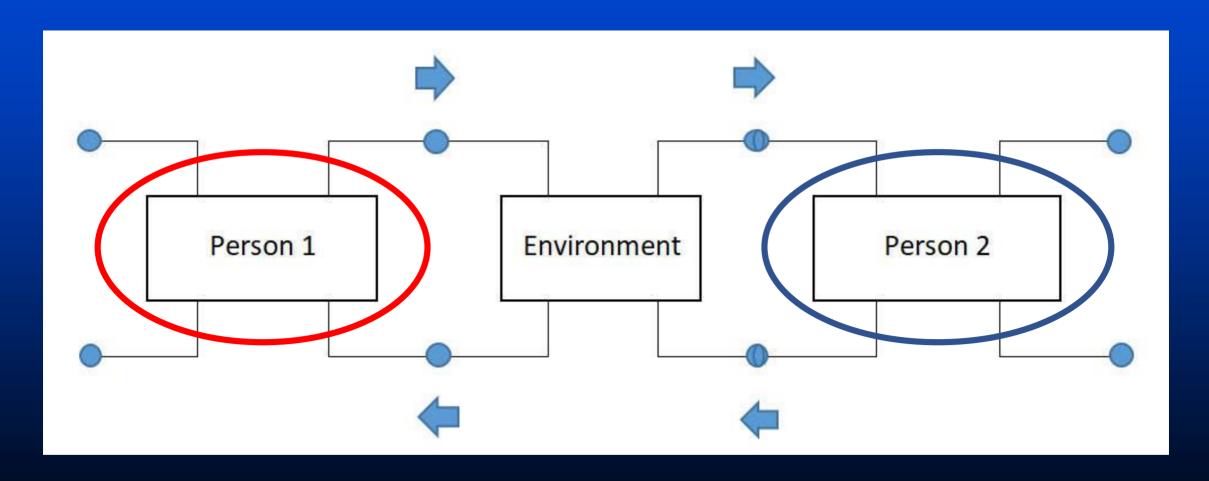
Analogy in Logical Action Using circuits to describe data transfer (information/influence) Similar to data flow charts


Analogy in Logical Action

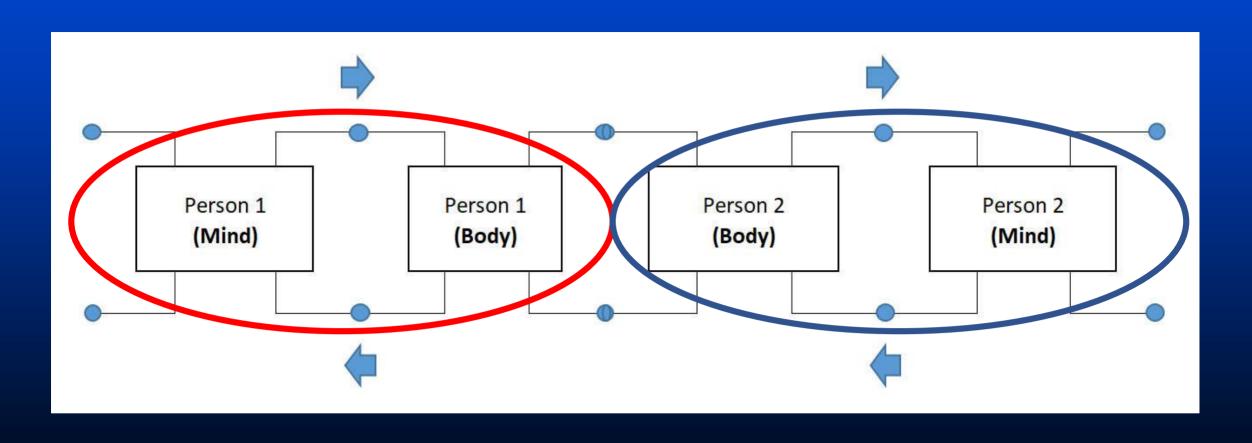
Using circuits/flowcharts to describe consciousness as data transfer (transmission of information/influence)



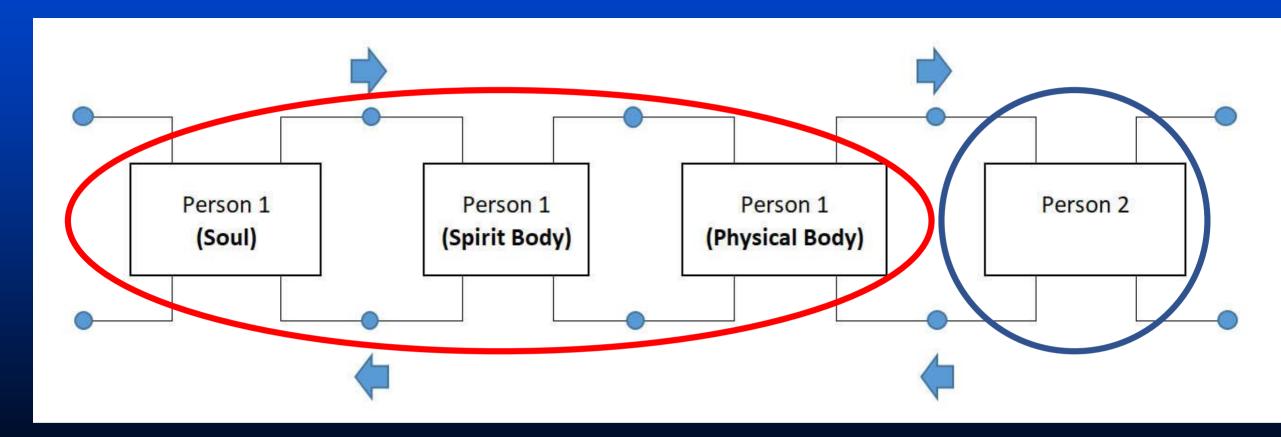
Analogy in Logical Action


Using circuits to describe data/emotion transfer (with common ground)

Analogy in Logical Action Using a two-port network



Analogy in Logical Action
Using a circuit model to describe personal interactions


Emotive Circuits

Circuit model of consciousness Modeling emotive force & emotive flux

Analogy in Logical Action

3-Level Model of consciousness Soul – Spirit Body – Physical Body

Analogy in Emotion Dynamics

As with all common physical phenomena, Emotion Dynamics includes:

- Flow (of emotional energy)
- Pressure (will and desire)
- Impedance (blockage of flow)

Analogy in Emotion Dynamics

Emotional Analogs

Emotional charge (e): Electric charge (q)

Emotional flow (Φ): Electric current (i)

Emotional flow rate (Φ') : Electric charge acceleration (i')

Will, Desire (E_e): Force, Voltage (E)

Emotive Impedance:

Emotive inductive reactance (L_e): habit, inertia, addiction

Emotive reluctance (R_e): denial, judgment, anger

Emotive capacitive reactance (C_e): doubt, fear, anxiety, avoidance

Emotive Impedance Force = impedance x flow

Emotive Force = Desire, Will, Passion

Emotive Impedance = Resistance + Reactance $E_e = L_e * \Phi_e' + R_e * \Phi_e + e/C_e$ $L_e = Inductive emotive reactance - Habit$ $R_e = Emotional resistance (reluctance) - Denial$

 C_e = Capacitive emotive reactance - Doubt

e = emotional charge (emotion, *noun*)

 Φ_{e} = emotional flow (emotion, verb)

 Φ_{e}' = emotional flow rate (change in emotions)

Emotive Impedance

Emotive inductive reactance:

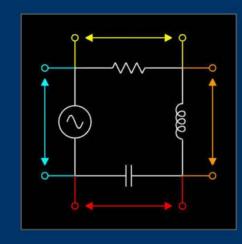
<u>Habit</u> Leads to: addiction, arrogance
Energy is *stored in motion* (*repetition*)

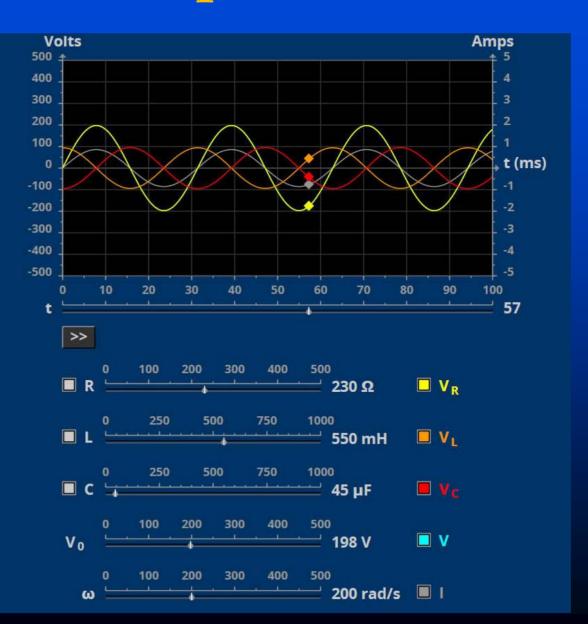
Emotive reluctance (emotional resistance):

<u>Denial:</u> judgment, anger, disappointment
Energy is lost to dissipation (friction)

Emotive capacitive reactance:

Doubt: fear, avoidance, anxiety, distance Energy is stored in separation (holding)


Emotive Impedance


mathlets.org/mathlets/series-rlc-circuit

mathlets.org

Many circuit modeling apps are available free online.

■ Phasor diagram

Emotional Impedance

	•	-
	$L_e \phi' + R_e \phi + e/C$	
Inductive Emotive Reactance	Emotive Resistance	Capacitive Emotive Reactance
Le	R _e	1/C _e
		<u>"</u>
KINEMATICS	KINETICS	STATICS
Yang	Damping	Yin
Craving	Anger	Attachment
Magnetic	Heat	Electric
Energy is stored in:	Energy is lost:	Energy is stored in:
moving quanta	through dissipation	separated quanta
Falling/Throwing	Conflict	Holding, Attaching
Inertia	Drag	Elasticity
Acquisition	Loss	Retention
Coercivity		Retentivity
Emotive Inertia	Emotive Resistance	Emotive Elastance/Rigidity
Inertance	Reluctance	1/Compliance
Need	Grief	Doubt
Habit	Pain	Fear/Terror
25 25 25 25 25 25 25 25 25 25 25 25 25 2		HS901 90

Uncertainty

Expansion/Compression

Loss

Damping/Friction

Repetition

Mass/Inertia

Analogy in Emotional Action

		Emotive Ch	narge	Dynamics		Emotive Ch	arg	ge Kinetics		Emotive Charge St	tatics	10
Emotive Force	(=)	Emotive Inertance	7	× ф'	+	Emotive Resistan	ce	ф		Emotive Capacitance	е	i
Will	=	Inertance	×	Emotive Flux Rate	+	Reluctance	×	Emotive Flux	+	1/Compliance	×	Emotive Charge
Desire	=0	Need	×		+	Grief	×		+	Doubt	×	
Intent	3=8	Habit	×		+	Pain	×		+	Fear/Terror	×	
Motive	=	Repetition	×		+	Loss	×		+	Uncertainty	×	
		Mass/Inertia	×		+	Damping/Friction	×		+	Expansion/Compression	×	
Emotive Impeda	ance	a 🗌								<u></u> "		
		Inductive Emotive Read	ctanc	e	-Ai	Emotive Resistance	ce		80	Capacitive Emotive Reactar	nce	
		High Reactance	201	Low Reactance	200	High Resistance	10	LowResistance	#01 Test	High Reactance	247	Low Reactance
		Arrogance		Humility		False Belief		Known Truth	48	Anxiety/Worry	-	Faith
		Expectation		Allowance		Disappointment		Acceptance		Distrust		Trust
		Habit/Addiction		Spontaneity		Judgment		Admittance		Avoidance		Engagement
		Presumption		Non-Assumption		Criticism		Appreciation		Separation		Alignment
		Prejudice		Openness		Anger		Conductance		Shame/Guilt		Innocence
		Façade		Sincerity	_	Frustration		Grace		Distance		Proximity
		NEED			B	DENIAL	_			DOUBT		
		HABIT				ANGER				FEAR		
Emotional Dyna	mic	.s										
Emotive Force	=	Inductive Emotive Reactan	ICE X	Emotive Flux Rate	+	Emotive Resistance	×	Emotive Flux	+	Capacitive Emotive Reactance	×	Emotive Charge
F _e		L _e	×	CONTROL OF	+	R_e	×		+	1/C _e	×	е
			×	0"	+	\(\begin{array}{c} '\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	×	O'	+		×	

End of Part 1: Analogy and Duality

Next is Part 2: Emotion Dynamics

Special Note

This video (Analogy and Duality) is Part 1 of a 2-part presentation.

Part 2 is "Emotion Dynamics" and explores the application of the circuit impedance model to the study and practice of Emotion Dynamics.

Thank you!

For more info: milesresearch.com/ggg999

If you have any comments or ideas, contact me:

Jon Miles

jon@milesresearch.com www.milesresearch.com